Коньяк и давление его полезные свойства


Можно ли пить коньяк при гипертонии, он понижает или повышает давление?

Коньяк повышает или понижает давление? Многие думают, что этот напиток полезен, но пить его без меры нельзя. Данный продукт имеет противопоказания и побочные действия, особенно это касается фальсифицированного коньяка. Если врач порекомендовал в качестве терапии выпивать немного коньячного напитка, то нужно серьезно подойти к выбору продукта и указанным дозировкам.

Содержание статьи

Свойства продукта

Несомненно, полезные свойства у коньяка есть, их немало, но чтобы раскрыть терапевтический эффект этого напитка, нужно строго соблюдать рекомендуемую суточную дозу. Женщинам полезно выпивать по 30 грамм напитка в день, а мужчинам – 50, лишь тогда можно рассчитывать на пользу для организма.

Полезные свойства:

  1. эффективен в борьбе с простудными заболеваниями;
  2. способствует обезболиванию горла и головы;
  3. используется в качестве потогонного средства;
  4. укрепляет иммунитет;
  5. назначается при низком тонусе сосудов;
  6. стимулирует аппетит;
  7. улучшение кровообращения во всем теле;
  8. полезен для снятия психологического напряжения;

Несмотря на массу полезных свойств, нельзя забывать, что данный напиток является спиртным, и ежедневно его пить нельзя.

Независимо от того, как коньяк влияет на давление, употреблять его в лечебных целях допустимо только в качестве экстренной помощи.

Влияние коньяка на давление

Коньяк повышает или понижает давление, если его доза для гипертоника строго ограничена? Если рассматривать подробно действие этого спиртосодержащего напитка, то безопаснее лечиться им от гипотонии, ведь как и любой другой алкоголь, этот продукт повышает уровень давления. Однако если человек выпивает допустимую норму, то можно ожидать снижения показателя тонометра. Секрет заключается в воздействии этого напитка на органы и системы тела.

При поступлении в организм 30-50 грамм коньяка, происходит расширение артерий и сосудов, и, как следствие, снижение артериального давления.

Если превысить норму напитка даже на 10-20 грамм, то возникает обратный эффект, появляется увеличение сердечного ритма, что способствует выталкиванию больших объемов крови. За счет этих процессов коньяк повышает давление. Можно ли пить этот напиток гипертоникам, зависит от многих факторов. Одни люди могут легко выпивать 50 грамм этого продукта и чувствовать себя отлично, для других такая доза может быть очень большой и принести вред здоровью.

Факторы влияния на организм:

  • Масса тела. Чем полнее человек, тем слабее на них действие коньяка.
  • Возраст. Меньше негативных влияний коньяк оказывает на молодых людей, в возрасте 30-40 лет.
  • Общее состояние организма. Вещества, из которых состоит этот напиток, действуют на каждого человека неодинаково. Ослабленное болезнями тело сильнее воспринимает негативное влияние спиртосодержащих напитков, поэтому коньяк при повышенном давлении таким людям лучше не пить.
  • Спорт. Если человек постоянно занимается спортом, то он может выпить чуть-чуть без вреда для организма, его тело физически сильное, легко справится с алкогольными напитками.
  • Хронические недуги. Людям, страдающим какими-либо патологиями хронического характера, нельзя употреблять алкоголь, будь то водка или коньяк.

Можно ли употреблять коньяк при гипертонии? Да, этот продукт снижает кровяное давление, но это способ терапии можно использовать в исключительных случаях, ведь небольшая передозировка грозит гипертонику инсультом или общим ухудшением состояния.

Влияние коньяка на артериальное давление может быть полезным при гипотонии, ведь, выпивая рюмку этого напитка, гипотоник сразу почувствует себя лучше, но пить каждый день данный продукт не следует, может развиться алкоголизм.

Народные средства от гипертонии на коньяке

В народной медицине есть масса домашних средств от высокого давления, с применением коньяка.

Независимо от того, понижает или повышает давление данный напиток, он используется в качестве стабилизатора этого уровня, за счет своих целебных свойств.

Если точно соблюдать все дозировки в приготовлении такого средства, то вредного влияния на организм человека не будет.

Народные средства, понижающие давление:

  1. Коньяк при гипертонии применяется в составе лекарства с использованием калины и меда. 0,5 кг ягод калины в свежем виде пропустить через мясорубку. Добавить в кашицу 0,5 кг натурального меда. После влить в смесь 1 стакан коньяка хорошего качества. Настаивать средство в темноте, около 3 недель. Принимать по 1 столовой ложке за 30 минут до употребления пищи, трижды за день. Если нет уверенности в том, можно ли пить коньяк при повышенном давлении, то лечиться данным лекарством вполне допустимо, без опасности возникновения побочных действий напитка.
  2. Коньячная настойка с сельдереем. Мелко нарезать сельдерей, корень и стебли, чтобы общее количество сырья было равно 4 столовым ложкам. Один стакан коньяка влить в получившуюся массу. Настоять средство около суток, после чего можно начинать лечение. Пить по 1 столовой ложке настойки трижды за день, перед едой. Курс приема можно продолжать месяц, после чего сделать перерыв.
  3. Коньячная настойка с календулой. Принимая это средство, можно не переживать о том, повышает ли коньяк давление. Гипертоники употребляют его постоянно и прекрасно себя чувствуют. Для приготовления нужно взять 1 стакан напитка и добавить в него 2 столовых ложки календулы сушеной. Настоять лекарство около 2 суток. Пить настойку надо 2 раза за день, перед приемом пищи. Курс лечения составляет 3 недели, после чего нужно сделать перерыв примерно 2 недели, и опять возобновить терапию.

Гипертония является серьезной проблемой, которая касается половины населения планеты. Гипотония тоже опасная патология, требующая лечения. Гипотоники ищут ответ на вопрос, что повышает давление. Есть несколько домашних рецептов для лечения данного недуга, с использованием коньяка.

Народные средства, повышающие давление:

  1. Коньячная настойка с женьшенем. Взять бутылку коньяка и отлить из нее 100 грамм жидкости. В бутылку всыпать 3 столовые ложки женьшеня измельченного. Настоять в темноте и прохладе 21 день. Пить по 1 столовой ложке настойки трижды за день, перед приемом пищи.
  2. Кофе с коньяком. В чашку с приготовленным кофе влить 3 столовые ложки хорошего коньяка. Выпить за один прием.

Выяснить, понижает или повышает давление коньяк, можно только с помощью врачей. Перед приемом любого народного средства нужна консультация доктора, ведь к спиртным напиткам нужно относиться очень осторожно.

Об опасных веществах - Пожары и взрыв

Взрывоопасные атмосферы могут образовываться горючими газами, туманом или парами или горючей пылью. Если вещества, смешанного с воздухом, достаточно, то все, что ему нужно, - это источник возгорания, чтобы вызвать взрыв.

Ежегодно люди получают травмы на работе в результате случайного возгорания или взрыва горючих веществ. Работа, связанная с использованием или созданием химикатов, паров, жидкостей, газов, твердых частиц или пыли, которые могут легко воспламениться или взорваться, является опасной.

Последствия взрыва или пожара на рабочем месте могут быть разрушительными с точки зрения потерянных жизней, травм, значительного ущерба собственности и окружающей среде, а также бизнес-сообщества.

Большинство пожаров можно предотвратить, поэтому вопросы пожарной безопасности на рабочем месте важны, и лица, ответственные за рабочие места и другие помещения, не являющиеся бытовыми, к которым имеет доступ население, могут их избежать, взяв на себя ответственность и приняв меры и процедуры пожарной безопасности.

Жидкости

Жидкости (например, бензин и другое топливо) и растворители в промышленных продуктах (например, краска, чернила, клеи и чистящие жидкости) выделяют легковоспламеняющиеся пары, которые при смешивании с воздухом могут воспламениться или взорваться. Легкость, с которой жидкости выделяют легковоспламеняющиеся пары, связана с простым физическим испытанием, называемым «точка воспламенения» (то есть минимальная температура, при которой жидкость при определенных условиях испытания выделяет достаточно легковоспламеняющегося пара для мгновенного воспламенения при применении источника воспламенения) что позволяет классифицировать их по пожарной опасности, которую они представляют при нормальном использовании.

Легковоспламеняющиеся жидкости классифицируются как:

Чрезвычайно легковоспламеняющийся

Жидкости с температурой вспышки ниже 0 ° C и точкой кипения (или, в случае диапазона кипения, начальной точкой кипения) ниже или равной 35 ° C.

Легковоспламеняющийся

Жидкости с температурой вспышки ниже 21 ° C, но не очень легковоспламеняющиеся.

Легковоспламеняющийся

Жидкости с температурой вспышки, равной или превышающей 21 ° C, но меньшей или равной 55 ° C, которые поддерживают горение при испытании предписанным способом при 55 ° C.

Пыль

Пыль, способная образовывать взрывоопасную атмосферу, также классифицируется как опасные вещества. Пыль можно производить из многих повседневных материалов, таких как уголь, древесина, мука, зерно, сахар, некоторые металлы и синтетические органические химические вещества. Они используются во многих отраслях промышленности, таких как пищевая / кормовая, химическая, деревообрабатывающая, обработка резины и пластмассы, а также порошки металлов. Это может быть сырье, промежуточные продукты, готовые продукты или отходы. Облако горючей пыли в воздухе может сильно взорваться при наличии источника возгорания (например, открытого пламени, искр).

Подробнее:

Газы

Газы, такие как сжиженный нефтяной газ (СНГ) или метан, которые обычно хранятся под давлением в баллонах и контейнерах для массовых грузов. Неконтролируемые выбросы могут легко воспламениться или превратить баллон в ракету.

Подробнее:

Твердые вещества

К твердым веществам относятся такие материалы, как пенопласт, упаковка и текстиль, которые могут сильно гореть и выделять густой черный дым, иногда ядовитый.

Прочие опасности возгорания и взрыва

Многие химические вещества могут вызывать вредное воздействие тепла и давления, поскольку они нестабильны или могут бурно реагировать с другими материалами. Химические вещества необходимо хранить правильно, и при совместной реакции необходимо получить достаточную информацию, чтобы гарантировать, что правильное управление технологическим процессом может быть использовано для предотвращения опасных экзотермических неуправляемых реакций.

Дополнительную информацию можно найти по телефону:

Газовая сварка

Легковоспламеняющиеся газы и кислород, используемые в качестве топлива для огневых работ и газовой резки, сами по себе могут стать причиной возникновения пожара и взрыва, без каких-либо других опасных или горючих веществ.Оценка рисков, проведенная в соответствии с DSEAR, поможет определить правильные средства управления и оборудование до начала работы.

Дополнительную информацию можно найти по телефону:

Регламент

Правила об опасных веществах и взрывоопасных средах 2002 года, DSEAR и ATEX требуют от работодателей оценки риска пожаров и взрывов, возникающих в результате работы с опасными веществами, и устранения или снижения этих рисков.

HSE и местные органы власти несут ответственность за соблюдение требований на рабочих местах, подпадающих под действие законодательства о работе во взрывоопасных зонах.Они описаны на следующих страницах:

.

законов о газе

законов о газе

Закон о газе

Одна из самых удивительных особенностей газов является что, несмотря на большие различия в химических свойствах , все газы более или менее соблюдают газовые законы . Газовые законы имеют дело как газы ведут себя относительно давления, объема, температуры и количество.

Давление

Газы - единственное состояние вещества, которое может быть сжато очень сильно или расширено, чтобы заполнить очень большой пространство. Давление сила на единицу площади, рассчитанная путем деления силы на область на который действует сила. Сила земного притяжения действует на воздух молекулы в создать силу воздуха, толкающего землю. Эта называется атмосферный давление .

Используемые единицы давления: паскаль (Па), стандартная атмосфера (атм) и торр. 1 атм - это среднее давление на уровне моря.Обычно используется как стандартная единица измерения давление. Однако единица СИ - это паскаль. 101 325 паскалей равно 1 атм.

Для лабораторных работ атмосфера очень большой. Более удобная единица измерения - торр. 760 торр равно 1 атм. Торр - это та же единица, что и мм рт. Ст. (Миллиметр Меркурий). Это давление, необходимое для поднятия трубки с ртутью 1. миллиметр.

Законы газа: давление Объем Температурные отношения

Закон Бойля: Давление-Объем Закон
Роберт Бойл (1627–1691)

Закон Бойля или давление-объем Закон гласит, что объем данного количества газа, удерживаемого при постоянном температура изменяется обратно пропорционально приложенному давлению, когда температура и масса постоянны.

 
Другой способ описать это - сказать, что их продукты постоянны.

PV = C

Когда давление повышается, объем понижается. когда объем увеличивается, давление падает.
Из приведенного выше уравнения можно вывести:

P 1 V 1 = П 2 В 2 знак равно P 3 V 3 и т. Д.

Это уравнение утверждает, что произведение начальный объем и давление равны произведению объема и давления после смены одного из них при постоянной температуре. Например, если начальный объем был 500 мл при давлении 760 торр, когда объем сжат до 450 мл, какое давление?
Вставьте значения:

P 1 V 1 = П 2 В 2

(760 торр) (500 мл) = P 2 (450 мл)
760 торр x 500 мл / 450 мл = P 2 844 торр = P 2
Давление после сжатия 844 торр.

Закон Чарльза: температура-объем Закон
Жак Чарльз (1746 - 1823)

Этот закон гласит, что объем данного количество газа, находящегося под постоянным давлением, прямо пропорционально Температура Кельвина.

В т

Как и прежде, можно ввести константу:

В / Т = С

По мере увеличения громкости температура также идет вверх, и наоборот.
То же, что и раньше, начальный и конечный тома и температуры при постоянном давлении могут быть рассчитаны.

В 1 / Т 1 = В 2 / T 2 = В 3 / т 3 пр.

Закон Гей-Люссака: давление Температурный закон
Джозеф Гей-Люссак (1778-1850)

Этот закон гласит, что давление данного количество газа, удерживаемого при постоянном объеме, прямо пропорционально Кельвину. температура.

п т

Как и прежде, можно ввести константу:

P / T = C

При повышении температуры давление будет расти.
Как и раньше, можно рассчитать начальное и конечное давление и температуру при постоянном объеме.

P 1 / T 1 = P 2 / T 2 = P 3 / т 3 и т.п.

Закон Авогадро: Объем Закон о суммах

Амедео Авогадро (1776-1856)

Дает соотношение между объемом и суммой когда давление и температура поддерживаются постоянными. Запомните сумму измеряется в молях. Кроме того, поскольку объем является одной из переменных, это означает, что контейнер, содержащий газ, в некотором роде гибкий и может расширять или сокращать.

Если количество газа в баллоне увеличивается, громкость увеличивается.Если количество газа в баллоне уменьшается, громкость уменьшается.

В п.

Как и раньше, можно ввести константу:

V / n = C

Это означает, что объемная доля всегда будет одним и тем же значением, если давление и температура остаются постоянными.

В 1 / n 1 = В 2 / n 2 = В 3 / п 3 и т.п.

Закон о комбинированном газе
Теперь мы можем объединить все, что у нас есть, в одно пропорция:
 
Объем данного количества газа пропорционален к соотношению его температуры Кельвина и его давления.
Как и раньше, можно ввести константу:

PV / T = C

При повышении давления температура также идет вверх, и наоборот.
То же, что и раньше, начальный и конечный тома и температуры при постоянном давлении могут быть рассчитаны.

P 1 V 1 / т 1 = P 2 V 2 / T 2 = P 3 V 3 / T 3 и т. Д.

Закон об идеальном газе

Все предыдущие законы предполагают, что газ измеряется идеальный газ , газ, который им всем точно подчиняется. Но в широком диапазоне температуры, давления и объема реальные газы немного отклоняются от идеала. Поскольку, по словам Авогадро, то же самое объемы газа содержат такое же количество молей, теперь химики могут определить формулы газообразных элементов и их формульные массы. Идея газовый закон:

PV = nRT

Где n - количество молей число молей и R - это константа, называемая универсальным газом константа и равна примерно 0.0821 Л-атм / моль-К.

ПРИМЕР 1:

Воздушный шар, который Чарльз использовал в своей исторической Полет в 1783 г. был заполнен около 1300 молей H 2 . Если наружная температура составляла 21 o C, а атмосферное давление 750 мм рт. ст., каков объем баллона?

Кол-во Необработанные данные Преобразование Данные с собственными единицами
П 750 мм рт. Ст. x 1 атм / 760 торр = 0.9868 атм
В ?
?
n 1300 моль H 2
1300 моль H 2
Р 0,0821 л-атм / моль-К
0.0821 Л-атм / моль-К
Т 21 или С + 273 = 294 К

V = nRT / P ; В = (1300 моль) (0,0821 л-атм / моль-К) (294 К) / (0,9868 атм) = 31798,358 л = 3,2 x 10 4 L.

Другие формы закона о газе

Если определение родинки включено в уравнение, результат:

PV = gRT / FW

или

FW = gRT / PV

Это уравнение обеспечивает удобный способ определение формулы веса газа, если масса, температура, объем и давление газа известно (или может быть определено).

ПРИМЕР 2:

0,1000 г образца соединения с эмпирическим формула CHF 2 выпаривают в колбу емкостью 256 мл при температуре 22,3 o C. Давление в колбе измеряется равным 70,5 торр. Какова молекулярная формула соединения?

Кол-во Необработанные данные Преобразование Данные с собственными единицами
П 70.5 торр x 1 атм / 760 торр = 0,0928 атм
В 256 мл x 1 л / 1000 мл = 0,256 л
г 0,1000 г образец
0,1000 г
Р 0.0821 Л-атм / моль-К
0,0821 л-атм / моль-К
Т 22,3 или С + 273 = 295,3 тыс.
FW ?
?

FW = gRT / PV ; В = (0.1000 г) (0,0821 л-атм / моль-К) (295,3 К) / (0,0928 атм) (0,256 л) = 102 г / моль

FW из CHF 2 = 51,0 г / моль ; 102 / 51,0 = 2; C 2 H 2 F 4

Если приведенное выше уравнение изменится дальше,

г / V = P x FW / RT = плотность

вы получите выражение плотности газа в зависимости от T и FW .

ПРИМЕР 3:

Сравните плотность He и воздуха (средняя FW = 28 г / моль) при 25,0 o ° C и 1,00 атм.

d He = (4,003 г / моль) (1,00 атм) / (0,0821 л-атм / моль-K) (298 K) = 0,164 г / L
d воздух = (28,0 г / моль) (1,00 атм) / (0,0821 л-атм / моль-К) (298 К) = 1,14 г / L

ПРИМЕР 4:

Сравните плотность воздуха на 25.0 o С и воздух при 1807 o ° C и 1,00 атм.

d He = (28,0 г / моль) (1,00 атм) / (0,0821 л-атм / моль-К) (298 К) = 1,14 г / L
d воздух = (28,0 г / моль) (1,00 атм) / (0,0821 л-атм / моль-K) (2080 K) = 0,164 г / L

Парциальное давление

Джон Далтон (1766-1844)

Закон парциальных давлений Дальтона состояний что полное давление смеси непрореагировавших газов складывается из их индивидуальные парциальные давления.

P всего = P a + P b + P c + ...

или

P всего = n a RT / В + n b RT / V + n c RT / V + ...

или

P итого = ( n a + n b + n c + ...) РТ / В

Давление в колбе со смесью 1 моль 0,20 моль O 2 и 0,80 моль N 2 будет быть таким же, как та же колба с 1 моль O 2 .

Парциальные давления полезны, когда газы собирается путем пропускания через воду (вытеснение). Собранный газ насыщен водяным паром, который составляет общее количество молей газа в баллоне.

ПРИМЕР 5:

Образец H 2 был приготовлен в лаборатория по реакции:

мг (тв) + 2 HCl (водн.) MgCl 2 (водн.) + H 2 (г)

456 мл газа собрано на 22.0 o C. Общее давление в колбе 742 торр. Сколько молей H 2 были собраны? Давление паров H 2 O при 22,0 o C составляет 19,8 торр.

Кол-во Необработанные данные Преобразование Данные с собственными единицами
P Всего 742 торр

P h3O 19.8 торр

P h3 742 торр - 19,8 торр = 722,2 торр x 1 атм / 760 торр = 0,9503 атм
В 456 мл x 1 л / 1000 мл = 0,456 л
n ?
?
Р 0.0821 Л-атм / моль-К
0,0821 л-атм / моль-К
Т 22 или С + 273 = 295 К

n h3 = P h3 V / RT ; n h3 = (0,9503 атм) (0.456 л) / (0,0821 л-атм / моль-К) (295 К) = 0,0179 моль H 2 .

Неидеально Газы

Йоханнес Дидерик ван дер Ваальс (1837-1923)

Уравнение идеального газа (PV = nRT) дает ценная модель отношений между объемом, давлением, температурой и количество частиц в газе. В качестве идеальной модели она служит эталоном для поведения реальных газов. Уравнение идеального газа упрощает предположения, которые явно не совсем верны.Настоящие молекулы делают имеют объем и привлекают друг друга. Все газы отклоняются от идеального поведение в условиях низкой температуры (когда начинается разжижение) и высокое давление (молекулы больше скучены, поэтому объем молекулы становится важным). Уточнения к уравнению идеального газа могут быть сделано, чтобы исправить эти отклонения.

В 1873 г. Дж. Д. ван дер Ваальс предложил свое уравнение: известное как уравнение Ван-дер-Ваальса. Как есть силы притяжения между молекулами давление ниже идеального значения.Чтобы учитывать это, член давления дополняется силой притяжения термин а / В 2 . Точно так же и у реальных молекул есть объем. Объем молекул обозначается термином b. Период, термин b является функцией сферического диаметра d, известного как диаметр Ван-дер-Ваальса. Уравнение Ван-дер-Ваальса для n моль газа:

Значения a и b ниже определены эмпирически:

Молекула a (литры 2 атм / моль 2 ) b (литры / моль)
H 2 0.2444 0,02661
O 2 1,360 0,03183
2 1,390 0,03913
CO 2 3,592 0,04267
Класс 2 6.493 0,05622
Ar 1,345 0,03219
Ne 0,2107 0,01709
He 0,03412 0,02370
.

Закон об идеальном газе

Давление воздуха в спущенной шине вашего автомобиля равно нулю? Если он полностью плоский, в нем все еще находится воздух атмосферного давления. Конечно, в нем нулевое полезное давление, и ваш манометр покажет ноль фунтов на квадратный дюйм. Большинство манометров показывают превышение давления над атмосферным, и это превышение называется «манометрическим давлением». Хотя это полезное измерение для многих практических целей, оно должно быть преобразовано в абсолютное давление для таких приложений, как закон идеального газа.

Так как частичный вакуум будет ниже атмосферного давления, часто используется фраза «отрицательное давление». Конечно, не существует такого понятия, как отрицательное абсолютное давление, но небольшие понижения давления обычно используются для уноса жидкостей в распылители, карбюраторы для автомобилей и во многих других областях. В случае дыхания мы говорим, что легкие производят отрицательное давление около -4 мм рт. Ст. Для втягивания воздуха, что, конечно, означает снижение на 4 мм рт. Ст. От окружающего атмосферного давления.

Когда система находится под атмосферным давлением, как на левом изображении выше, манометрическое давление считается нулевым. На этом изображении система открыта, так что она находится в равновесии с атмосферой. На правом изображении система закрыта, и плунжер опускается до тех пор, пока давление не станет равным примерно 15 фунтам / дюйм 2 . Это означает, что абсолютное давление было увеличено примерно вдвое за счет сжатия газа до половины его объема (закон идеального газа).Стандартное атмосферное давление в этих общих единицах измерения США составляет 14,7 фунта / дюйм 2 , поэтому для получения абсолютного давления его необходимо прибавить к показанному выше манометрическому давлению.

Указатель

Концепции кинетической теории

.

Свойства алюминия

Физические свойства алюминия

основной Физические свойства алюминия и алюминиевого сплава, которые пригодны для использования:

Эти свойства алюминия представлены в таблицах ниже [1]. Их можно рассматривать только как основу для сравнения сплавов и их состояний и не следует использовать для инженерных расчетов. Это не гарантированные значения, поскольку в большинстве случаев это средние значения для продуктов разных размеров, форм и способов изготовления.Следовательно, они могут не точно соответствовать продуктам всех размеров и форм.

Номинальные значения популярных плотностей алюминиевых сплавов представлены в отожженном состоянии (О). Различия в плотности из-за того, что сплавы, содержащие различные легирующие элементы в разном количестве: кремний и магний легче алюминия (2,33 и 1,74 г / см 3 ), а железо, марганец, медь и цинк - тверже (7,87; 7,40; 8,96 и 7,13 г / см 3 ).

Влияние глинозема и физических свойств, в частности его плотности, на структурные характеристики алюминиевых сплавов см.Вот.

Алюминий как химический элемент

  • Алюминий Это третий по распространенности (после кислорода и кремния) среди примерно 90 химических элементов, которые содержатся в земной коре.
  • Среди металлических элементов - он первый.
  • Этот металл обладает множеством полезных свойств, физических, механических, технологических, благодаря которым он широко используется во всех сферах жизнедеятельности человека.
  • Алюминий - ковкий металл, имеющий серебристо-белый цвет, легко обрабатывается большинством методов обработки металлов давлением: прокаткой, волочением, экструзией (прессованием), ковкой.
  • Его плотность - удельный вес - составляет около 2,70 граммов на кубический сантиметр.
  • Чистый алюминий плавится при температуре 660 градусов по Цельсию.
  • Алюминий имеет относительно высокую теплопроводность и электропроводность.
  • В присутствии кислорода всегда покрывается тонкой невидимой оксидной пленкой. Эта пленка практически непроницаема и обладает относительно высокими защитными свойствами. Поэтому алюминий обычно показывает стабильность и долгий срок службы в нормальных атмосферных условиях.

Сочетание свойств алюминия и его сплавов

Алюминий и его сплавы обладают уникальным сочетанием физических и других свойств. Он изготовлен из алюминия с использованием одного из самых универсальных, экономичных и привлекательных строительных и потребительских материалов. Алюминий используется в очень широком диапазоне - от мягкой, очень пластиковой упаковочной пленки до самых сложных космических проектов. Алюминий считается вторым после стали среди множества конструкционных материалов.

низкая плотность

Алюминий - одно из самых легких промышленных сооружений. Плотность алюминия примерно в три раза ниже, чем у стали или меди. Это физическое свойство обеспечивает высокую удельную прочность - прочность на единицу веса.

Рисунок 1.1 - Удельный вес алюминия по сравнению с другими металлами [3]

Рисунок 1.2 - Влияние легирующих элементов
на прочностные свойства, твердость, хрупкость и пластичность
[3]

Рисунок 1 - Прочность алюминия на единицу плотности в сравнении с различными металлами и сплавами [3]

Рисунок 2 - Кривые растяжения алюминия в сравнении с различными металлами и сплавами [3]

Таким образом, алюминиевые сплавы широко используются в транспортном машиностроении для увеличения грузоподъемности автомобилей и экономии топлива.

  • паром-катамарана,
  • нефтяных танкеров и
  • самолетов -

Вот лучшие примеры использования алюминия на транспорте.


Рисунок 3 - плотность алюминия в зависимости от чистоты и температуры [2]

коррозионная стойкость

Алюминий обладает высокой коррозионной стойкостью за счет тонкого слоя оксида алюминия на его поверхности. Эта оксидная пленка образуется мгновенно, как только свежая поверхность алюминия входит в контакт с воздухом (рисунок 4).Во многих случаях это свойство позволяет использовать алюминий без специальной обработки поверхности. Если необходимо дополнительное защитное или декоративное покрытие, применяется анодирование или окраска поверхности.


Рисунок 4
а - естественное оксидное покрытие на сверхчистом алюминии;
б - алюминий чистотой от коррозии 99,5% с естественным оксидным покрытием
коорозионно в агрессивных средах [2]

Рисунок 5.1 - Влияние легирующих элементов на коррозионную стойкость и усталостную прочность [3]

Рисунок 5.2 - точечная коррозия (точечная коррозия) алюминиевых листов
из сплава 3103 в различных агрессивных средах [3]

Прочность

Механические свойства чистого алюминия довольно низкие (рисунок 6). Однако эти механические свойства могут сильно вырасти, если в легирующие элементы добавлен алюминий и, кроме того, он подвергнется термическому (рисунок 6) или деформационному (рисунок 7) упрочнению.

Типичные легирующие элементы включают:

  • марганец,
  • Кремний
  • ,
  • медь,
  • магний,
  • и цинк.


Рисунок 6 - Влияние чистоты алюминия на его прочность и твердость [2]


Рисунок 7 - Механические свойства деформируемых высокочистых
алюминиево-медных сплавов в различных состояниях [2]
(О - отожженный, W - сразу после отпуска, Т4 - естественно состаренный, Т6 - искусственно состаренный)

Рисунок 8 - Механические свойства алюминия 99,50%
в зависимости от степени холодной деформации [2]

Рисунок 2 - Влияние легирующих элементов на плотность и модуль Юнга [3]

Стойкость при низких температурах

Известно, что сталь становится хрупкой при низких температурах.Кроме того, алюминий при низких температурах увеличивает свою прочность и сохраняет высокую вязкость. Именно это физическое свойство позволило использовать его в космических аппаратах, в условиях работы в холодном пространстве.

Рисунок 9 - Изменение механических свойств алюминиевого сплава 6061
при понижении температуры

Теплопроводность

Алюминий проводит тепло в три раза быстрее, чем сталь. Это физическое свойство очень важно в теплообменниках для нагрева или охлаждения рабочей среды.здесь - широкое применение алюминия и его сплавов в посуде, кондиционерах, примышленных и автомобильных теплообменниках.

Рисунок 10 - Теплопроводность алюминия по сравнению с другими металлами [3]

отражательная способность

Алюминий - отличный отражатель лучистой энергии во всем диапазоне длин волн. Это физическое свойство позволяет использовать его в устройствах, которые работают против ультрафиолетового спектра через видимый спектр, инфракрасного спектра и тепловых волн, а также таких электромагнитных волн, как радиоволны и радиолокационные волны [1].

Алюминий обладает способностью отражать более 80% световых волн, что обеспечивает широкое использование в осветительных приборах (рисунок 11). Благодаря своим физическим свойствам используется в теплоизоляционных материалах. например, алюминиевая кровля отражает большую часть солнечного излучения, что обеспечивает прохладу в помещении летом и в то же время сохраняет тепло в помещении зимой.


Рисунок 11 - Отражающие свойства алюминия [2]


Рисунок 12 - Эмиссионные и отражающие свойства алюминия с различной обработкой поверхности [3]


Рисунок 13 - Сравнение отражающих свойств различных металлов [3]

электрические свойства

  • Алюминий - один из двух доступных металлов, которые обладают достаточно высокой электропроводностью, чтобы применять их в качестве электрических проводников.
  • Электропроводность «электрического» алюминия марки 1350 составляет около 62% от международного стандарта IACS - электропроводность отожженной меди.
  • Однако удельный вес алюминия составляет лишь треть от удельного веса меди. Это означает, что он тратит вдвое больше электроэнергии, чем медь того же веса. Это физическое свойство обеспечивает алюминий, широко используемый в высоковольтных линиях электропередачи (ЛЭП), трансформаторах, электрических автобусах и электрических лампочках.


Рисунок 14 - Электрические свойства алюминия [3]

Магнитные свойства

Алюминий не намагничивается в электромагнитных полях. Это делает его полезным для защиты оборудования от воздействия электромагнитных полей. Еще одно применение этой функции - компьютерные диски и параболическая антенна.


Рисунок 15 - Намагниченный алюминиевый сплав AlCu [3]

токсичные свойства

Это свойство алюминия - отсутствие токсичности - было обнаружено в начале его промышленного освоения.Именно это свойство алюминия позволило использовать его для изготовления кухонной утвари и техники, не оказывая вредного воздействия на организм человека. Алюминий с его гладкой поверхностью легко чистится, при готовке важно обеспечить высокую гигиену. Алюминиевая фольга и контейнеры широко и безопасно используются при упаковке прямого контакта с пищевыми продуктами.

звукоизоляционные свойства

Это свойство позволяет использовать алюминий при выполнении акустических потолков.

Способность поглощать энергию удара

Алюминий имеет модуль упругости в три раза меньше, чем сталь.Это физическое свойство делает его большим преимуществом для изготовления автомобильных бамперов и других средств защиты автомобилей.

Рисунок 16 - Автомобильные алюминиевые профили
для поглощения энергии удара при аварии

огнезащитные свойства

Алюминиевые детали не образуют искр при ударах друг о друга, а также о других цветных металлах. Это физическое свойство используется при повышенных мерах пожарной безопасности конструкции, например, на морских нефтяных вышках.

В то же время, при повышении температуры выше 100 градусов Цельсия прочность алюминиевых сплавов существенно снижается (рисунок 17).

Рисунок 17 - Прочность на растяжение алюминиевого сплава 2014-T6
при различных температурах испытаний [3]

Технологические свойства

Легкость, с которой алюминию можно придать любую форму - технологичность, это одно из важнейших его преимуществ. Очень часто он может успешно конкурировать с более дешевыми материалами, с которыми намного сложнее обращаться:

  • Этот металл можно отливать любым способом, известным металлургу, литейному производству.
  • Его можно свернуть до толщины фольги или более тонких листов бумаги.
  • Алюминиевые пластины можно штамповать, растягивать, устанавливать и формовать всеми известными методами обработки металлов давлением.
  • Алюминий поддается любой ковке
  • Алюминиевый провод
  • , вытянутый из круглого стержня, затем может быть вплетен в электрические кабели любого типа и размера.
  • Нет никаких ограничений по форме профилей, в которых он изготовлен из данного металла методом экструзии (прессования).

Рисунок 18.1 - литье алюминия в песчаные формы

Рисунок 18.2 - Непрерывная разливка-прокатка алюминиевой полосы [5]

Рисунок 18.3 - Десантная операция при изготовлении алюминиевых банок [4]

Рисунок 18.4 - операция ковки алюминия

Рисунок 18.5 - Алюминий холодного волочения


Рисунок 18.6 - Прессование (экструзия) алюминия

Источники:

  1. Алюминий и алюминиевые сплавы.- ASM International, 1993.
  2. А. Свердлин Свойства чистого алюминия // Справочник по алюминию, Vol. 1 / под ред. G.E. Тоттен, Д.С. Маккензи, 2003 г.,
  3. ТАЛАТ 1501
  4. ТАЛАТ 3710

.

Смотрите также