Теплопроводность строительных материалов, что это, таблица

Просто о сложном: сравнительная таблица теплопроводности строительных материалов

Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.

Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.

Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.

Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.

Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

    Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

  • Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
  • «Холодно, холодно и сыро. Не пойму, что же в нас остыло. » Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

    Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

    Коэффициент теплопроводности строительных материалов – таблицы

    Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

    Таблица коэффициентов теплоотдачи материалов. Часть 1

    Таблица теплопроводности изоляционных материалов для бетонных полов

    Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

    Таблица теплопроводности кирпича

    Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

    Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

    Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

    Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

    Теплопроводность разных видов кирпичей

    Таблица теплопроводности металлов

    Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

    Теплоэффективность разных видов металлов. Часть 3

    Таблица теплопроводности дерева

    Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

    Читайте также:
    Защита дерева от влаги и гниения: пропитки, антисептики, народные средства

    Прочность разных пород древесины

    Таблица проводимости тепла бетонов

    Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

    Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

    Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

    Какой коэффициент теплопроводности у воздушной прослойки

    В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

    Таблица проводимости тепла воздушных прослоек

    Калькулятор расчёта толщины стены по теплопроводности

    На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

    Окно расчёта калькулятора

    В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

    Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

    Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

    Расчёт проводимости тепла всех прослоек стен

    Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

    Теплопроводность строительных материалов: таблица коэффициентов

    Время чтения: 6 минут Нет времени?

    Отправим материал вам на e-mail

    Любые строительные работы начинаются с создания проекта. При этом планируется как расположение комнат в здании, так и рассчитываются главные теплотехнические показатели. От данных значений зависит, насколько будущая постройка будет теплой, долговечной и экономичной. Позволит определить теплопроводность строительных материалов – таблица, в которой отображены основные коэффициенты. Правильные расчеты являются гарантией удачного строительства и создания благоприятного микроклимата в помещении.

    Чтобы дом был теплым без утеплителя потребуется определенная толщина стен, которая отличается в зависимости от вида материала

    Теплопроводность: понятие и теория

    Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

    Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

    Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

    Потери тепла на разных участках постройки будут отличаться

    Полезный совет! При постройке домов стоит использовать сырье с минимальной проводимостью тепла.

    От чего зависит величина теплопроводности?

    От множества факторов зависит значение теплопроводности строительных материалов. Таблица коэффициентов, представленная в нашем обзоре, это наглядно показывает.

    Наглядный пример демонстрирует свойство теплопроводности

    На данный показатель оказывают влияние следующие параметры:

    • более высокая плотность способствует прочному взаимодействию частиц друг с другом. При этом уравновешивание температур производится более быстро. Чем плотнее материал, тем лучше пропускается тепло;
    • пористость сырья свидетельствует о его неоднородности. При перемещении тепловой энергии через подобную структуру охлаждение будет небольшим. Внутри гранул находится только воздух, который обладает минимальным количеством коэффициента. Если поры маленькие, то при этом затрудняется передача тепла. Но повышается значение теплопроводность;
    • при повышенной влажности и промокании стен здания показатель прохождения тепла будет выше.

    Чем ниже показатель теплопроводности строительного сырья, тем уютнее и теплее в помещении

    Использование значений теплопроводности на практике

    Материалы, используемые в строительстве, могут быть конструкционными и теплоизолирующими.

    Существует огромное количество материалов с теплоизолирующими свойствами

    Самое большое значение теплопроводности у конструкционных материалов, которые используются при возведении перекрытий, стен и потолков. Если не использовать сырье с теплоизолирующими свойствами, то для сохранения тепла потребуется монтаж толстого слоя утеплителя для возведения стен.

    Читайте также:
    Марки цемента: старый и новый ГОСТ, расшифровка

    Часто для утепления строений используются более простые материалы

    Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов, таблица показывает все значения.

    В некоторых случаях более эффективным считается утепление снаружи

    Полезная информация! Для построек из древесины и пенобетона не обязательно использовать дополнительное утепление. Даже применяя низкопроводной материал, толщина сооружения не должна быть менее 50 см.

    Особенности теплопроводности готового строения

    Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.

    В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением

    Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из кирпича, бетона и камня дополнительно утеплять.

    Утепление построек из бетона или камня повышает комфортные условия внутри здания

    Полезный совет! Перед тем как утеплять жилище, необходимо продумать качественную гидроизоляцию. При этом даже повышенная влажность не повлияет на особенности теплоизоляции в помещении.

    Разновидности утепления конструкций

    Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:

    • при возведении каркасной постройки, используемая древесина обеспечивает жесткость здания. Утеплитель прокладывается между стойками. В некоторых случаях применяется утепление снаружи здания;

    Монтажные работы по утеплению каркасного сооружения требуют использования дополнительных конструктивных элементов

    • здание из стандартных материалов: шлакоблоков или кирпича. При этом утепление часто проводится по наружной стороне.

    Особенности монтажа теплоизолирующего материала с внутренней стороны

    Как определить коэффициенты теплопроводности строительных материалов: таблица

    Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:

    Необходимые коэффициенты для самых различных материалов

    Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.

    Технические характеристики утеплителей для бетонных полов

    О значении теплопроводности можно судить по сравнительным характеристикам

    Полезные рекомендации

    Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.

    Выполняя утепление потолка на веранде или террасе, можно использовать более легкие стройматериалы

    Утепление потолочного перекрытия на верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.

    При утеплении потолка, стоит подобрать материал для пароизоляции и для гидроизоляции

    Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.

    Создание теплого пола требует особых знаний. Важно учитывать высоту и толщину материалов

    Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления. При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:

    • если какая-то часть батарей холодная, то требуется спустить воздух. При этом открывается специальный клапан;
    • чтобы тепло проникало внутрь дома, на не обогревало стены, рекомендуется установить защитный экран с покрытием из фольги;
    • для свободной циркуляции подогретого воздуха не стоит радиаторы загромождать мебелью или шторами;
    • если снять декоративный экран, то теплоотдача увеличиться на 25 %.

    Выбор качественных радиаторов позволяет лучше сберечь тепло в помещении

    Тепловые потери через входные двери могут составлять до 10 %. При этом значительное количество тепла тратится на воздушные массы, которые поступают снаружи. Для устранения сквозняков надо переустановить изношенные уплотнители и щели, которые могут появиться между стеной и коробом. В данном случае дверное полотно можно обить, а щели заполнить с помощью монтажной пены.

    Выбор утеплителя зависит от материала самой двери

    Одним из основных источников теплопотерь являются окна. Если рамы старые, то появляются сквозняки. Через оконные проемы теряется около 35% тепловой энергии. Для качественного утепления применяются двухкамерные стеклопакеты. К другим способам относится утепление щелей монтажной пеной, оклейка мест стыков с рамой специальным уплотнителем и нанесение силиконового герметика. Правильное и комплексное утепление является гарантией комфортного и теплого дома, в котором не появиться плесень, сквозняки и холодный пол.

    Экономьте время: отборные статьи каждую неделю по почте

    Теплопроводность строительных материалов

    Одним из важнейших показателей строительных материалов, особенно в условиях российского климата, является их теплопроводность, которая в общем виде определяется как способность тела к теплообмену (то есть распределению тепла от более горячей среды к более холодной).

    В данном случае более холодная среда – это улица, а горячая – внутреннее пространство (летом зачастую наоборот). Сравнительная характеристика приведена в таблице:

    Читайте также:
    Термодревесина (термодерево): технология, свойства, область применения

    Коэффициент рассчитывается как количество тепла, которое пройдет через материал толщиной 1 метр за 1 час при разнице температур внутри и снаружи на 1 градус Цельсия. Соответственно, единицей измерения строительных материалов является Вт/ (м*оС) – 1 Ватт, разделенный на произведение метра и градуса.

      • 0.1 Видео для справки
    • 1 Применение материалов с небольшой теплопроводностью в утеплении домов
      • 1.1 Пенопласт
        • 1.1.1 Как выбрать качественный утеплитель
      • 1.2 Минеральная вата
    Материал Теплопроводность,Вт/(м·град) Теплоемкость,Дж/(кг·град) Плотность,кг/м3
    Асбестоцемент 27759 1510 1500-1900
    Асбестоцементный лист 0.41 1510 1601
    Асбозурит 0.14-0.19 400-652
    Асбослюда 0.13-0.15 450-625
    Асботекстолит Г ( ГОСТ 5-78) 1670 1500-1710
    Асфальт 0.71 1700-2100 1100-2111
    Асфальтобетон (ГОСТ 9128-84) 42856 1680 2110
    Асфальт в полах 0.8
    Ацеталь (полиацеталь,полиформальдегид) POM 0.221 1400
    Береза 0.151 1250 510-770
    Бетон легкий с природной пемзой 0.15-0.45 500-1200
    Бетон на зольном гравии 0.24-0.47 840 1000-1400
    Бетон на каменном щебне 0.9-1.5 2200-2500
    Бетон на котельном шлаке 0.57 880 1400
    Бетон на песке 0.71 710 1800-2500
    Бетон на топливных шлаках 0.3-0.7 840 1000-1800
    Бетон силикатный плотный 0.81 880 1800
    Битумоперлит 0.09-0.13 1130 300-410
    Блок газобетонный 0.15-0.3 400-800
    Блок керамический поризованный 0.2
    Вата минеральная легкая 0.045 920 50
    Вата минеральная тяжелая 0.055 920 100-150
    пенобетон, газо- и пеносиликат 0.08-0.21 840 300-1000
    Газо- и пенозолобетон 0.17-0.29 840 800-1200
    Гетинакс 0.230 1400 1350
    Гипс формованный сухой 0.430 1050 1100-1800
    Гипсокартон 0.12-0.2 950 500-900
    Гипсоперлитовый раствор 0.140
    Глина 0.7-0.9 750 1600-2900
    Глина огнеупорная 42826 800 1800
    Гравий (наполнитель) 0.4-0.930 850 1850
    Гравий керамзитовый (ГОСТ 9759-83) — засыпка 0.1-0.18 840 200-800
    Гравий шунгизитовый (ГОСТ 19345-83) — засыпка 0.11-0.160 840 400-800
    Гранит (облицовка) 42858 880 2600-3000
    Грунт 10% воды 27396
    Грунт песчаный 42370 900
    Грунт сухой 0.410 850 1500
    Гудрон 0.30 950-1030
    Железо 70-80 450 7870
    Железобетон 42917 840 2500
    Железобетон набивной 20090 840 2400
    Зола древесная 0.150 750 780
    Золото 318 129 19320
    Каменноугольная пыль 0.1210 730
    Камень керамический поризованный 0.14-0.1850 810-840
    Картон гофрированный 0.06-0.07 1150 700
    Картон облицовочный 0.180 2300 1000
    Картон парафинированный 0.0750
    Картон плотный 0.1-0.230 1200 600-900
    Картон пробковый 0.0420 145
    Картон строительный многослойный 0.130 2390 650
    Картон термоизоляционный 0.04-0.06 500
    Каучук натуральный 0.180 1400 910
    Каучук твердый 0.160
    Каучук фторированный 0.055-0.06 180
    Кедр красный 0.095 500-570
    Керамзит 0.16-0.2 750 800-1000
    Керамзитобетон легкий 0.18-0.46 500-1200
    Кирпич доменный (огнеупорный) 0.5-0.8 1000-2000
    Кирпич диатомовый 0.8 500
    Кирпич изоляционный 0.14
    Кирпич карборундовый 700 1000-1300
    Кирпич красный плотный 0.67 840-880 1700-2100
    Кирпич красный пористый 0.440 1500
    Кирпич клинкерный 0.8-1.60 1800-2000
    Кирпич кремнеземный 0.150
    Кирпич облицовочный 0.930 880 1800
    Кирпич пустотелый 0.440
    Кирпич силикатный 0.5-1.3 750-840 1000-2200
    Кирпич силикатный с тех. пустотами 0.70
    Кирпич силикатный щелевой 0.40
    Кирпич сплошной 0.670
    Кирпич строительный 0.23-0.30 800 800-1500
    Кирпич трепельный 0.270 710 700-1300
    Кирпич шлаковый 0.580 1100-1400
    Листы пробковые тяжелые 0.05 260
    Магнезия в форме сегментов для изоляции труб 0.073-0.084 220-300
    Мастика асфальтовая 0.70 2000
    Маты, холсты базальтовые 0.03-0.04 25-80
    Маты минераловатные прошивные 0.048-0.056 840 50-125
    Нейлон 0.17-0.24 1600 1300
    Опилки древесные 0.07-0.093 200-400
    Пакля 0.05 2300 150
    Панели стеновые из гипса 0.29-0.41 600-900
    Парафин 0.270 870-920
    Паркет дубовый 0.420 1100 1800
    Паркет штучный 0.230 880 1150
    Паркет щитовой 0.170 880 700
    Пемза 0.11-0.16 400-700
    Пемзобетон 0.19-0.52 840 800-1600
    Пенобетон 0.12-0.350 840 300-1250
    Пенопласт резопен ФРП-1 0.041-0.043 65-110
    Пенополиуретановые панели 0.025
    Пеносиликальцит 0.122-0.320 400-1200
    Пеностекло легкое 0.045-0.07 100..200
    Пеностекло или газо-стекло 0.07-0.11 840 200-400
    Пенофол 0.037-0.039 44-74
    Пергамент 0.071
    Песок 0% влажности 0.330 800 1500
    Песок 10% влажности 0.970
    Песок 20% влажности 12055
    Плита пробковая 0.043-0.055 1850 80-500
    Плитка облицовочная, кафельная 42856 2000
    Полиуретан 0.320 1200
    Полиэтилен высокой плотности 0.35-0.48 1900-2300 955
    Полиэтилен низкой плотности 0.25-0.34 1700 920
    Поролон 0.04 34
    Портландцемент (раствор) 0.470
    Прессшпан 0.26-0.22
    Пробка гранулированная 0.038 1800 45
    Пробка минеральная на битумной основе 0.073-0.096 270-350
    Пробка техническая 0.037 1800 50
    Пробковое покрытие для полов 0.078 540
    Ракушечник 0.27-0.63 835 1000-1800
    Раствор гипсовый затирочный 0.50 900 1200
    Резина пористая 0.05-0.17 2050 160-580
    Рубероид (ГОСТ 10923-82) 0.17 1680 600
    Стекловата 0.03 800 155-200
    Стекловолокно 0.040 840 1700-2000
    Туфобетон 0.29-0.64 840 1200-1800
    Уголь каменный обыкновенный 0.24-0.27 1200-1350
    Шлакопемзобетон (термозитобетон) 0.23-0.52 840 1000-1800
    Штукатурка гипсовая 0.30 840 800
    Щебень из доменного шлака 0.12-0.18 840 400-800
    Эковата 0.032-0.041 2300 35-60

    Сравнение теплопроводности строительных материалов, а также их плотности и паропроницаемости представлено в таблице.

    Читайте также:
    Пеноплэкс: что такое, свойства, характеристики, применение

    Жирным шрифтом выделены наиболее эффективные материалы, применяющиеся в строительстве домов.

    Ниже представлена наглядная схема, из которой легко увидеть, какую толщину должна иметь стена из разных материалов, чтобы она удерживала одинаковое количество тепла.

    Очевидно, что по этому показателю преимущество за искусственными материалами (например, пенополистиролом).

    Примерно такую же картину можно увидеть, если составить диаграмму строительных материалов, которые наиболее часто применяются в работе.

    При этом большое значение имеют условия окружающей среды. Ниже приведена таблица теплопроводности строительных материалов, которые эксплуатируются:

    • в обычных условиях (А);
    • в условиях повышенной влажности (Б);
    • в условиях засушливого климата.

    Данные взяты на основе соответствующих строительных норм и правил (СНиП II-3-79), а также из открытых интернет-источников (веб-страницы производителей соответствующих материалов). Если данные по конкретным условиям эксплуатации отсутствуют, то поле в таблице не заполнено.

    Чем больше показатель, тем больше тепла он пропускает при прочих равных условиях. Так, у некоторых видов пенополистирола этот показатель равен 0,031, а у пенополиуретана – 0,041. С другой стороны, у бетона коэффициент на порядок выше – 1,51, следовательно, он пропускает тепло значительно лучше, чем искусственные материалы.

    Сравнительные потери тепла через разные поверхности дома можно увидеть на схеме (100% — общие потери).

    Очевидно, что большая часть уходит именно из стен, поэтому отделка этой части помещения – наиболее важная задача, особенно в условиях северного климата.

    Видео для справки

    Применение материалов с небольшой теплопроводностью в утеплении домов

    В основном сегодня используются искусственные материалы – пенопласт, минеральная вата, пенополиуретан, пенополистирол и другие. Они очень эффективны, доступны по цене и достаточно легко монтируются, не требуя особых навыков работы.

    • при возведении стен (требуется меньшая их толщина, поскольку основную нагрузку по сбережению тепла берут на себя именно теплоизоляционные материалы);
    • при обслуживании дома (тратится меньше ресурсов на отопление).

    Пенопласт

    Это один из лидеров в своей категории, который широко используется в утеплении стен как снаружи, так и внутри. Коэффициент составляет примерно 0,052-0,055 Вт/(оС*м).

    Как выбрать качественный утеплитель

    При выборе конкретного образца важно обращать внимание на маркировке – именно она содержит все основные сведения, влияющие на свойства.

    Например, ПСБ-С-15 означает следующее:

    Минеральная вата

    Еще один довольно распространенный утеплитель, который применяется как во внутренней, так и в наружной отделке помещений, – это минеральная вата.

    Материал достаточно долговечный, недорогой и несложен в монтаже. Вместе с тем, в отличие от пенопласта, она хорошо впитывает влагу, поэтому при ее использовании необходимо применять и гидроизоляционные материалы, что удорожает монтажные работы.

    Теплопроводность строительных материалов: таблица коэффициентов

    Теплопроводность: понятие и теория

    Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

    Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

    Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

    Потери тепла на разных участках постройки будут отличаться

    Полезный совет! При постройке домов стоит использовать сырье с минимальной проводимостью тепла.

    Утеплители для стен

    Утеплители используются, когда не хватает тепловой сопротивляемости наружных стен. Обычно для создания комфортного микроклимата в помещениях достаточно толщины 5-10 см.

    Значение коэффициента λ приводится в следующей таблице.

    Теплопроводность измеряет способность материала пропускать тепло через себя. Она сильно зависит от состава и структуры. Плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, являются плохими проводниками.

    От чего зависит величина теплопроводности?

    От множества факторов зависит значение теплопроводности строительных материалов. Таблица коэффициентов, представленная в нашем обзоре, это наглядно показывает.

    Наглядный пример демонстрирует свойство теплопроводности

    На данный показатель оказывают влияние следующие параметры:

    • более высокая плотность способствует прочному взаимодействию частиц друг с другом. При этом уравновешивание температур производится более быстро. Чем плотнее материал, тем лучше пропускается тепло;
    • пористость сырья свидетельствует о его неоднородности. При перемещении тепловой энергии через подобную структуру охлаждение будет небольшим. Внутри гранул находится только воздух, который обладает минимальным количеством коэффициента. Если поры маленькие, то при этом затрудняется передача тепла. Но повышается значение теплопроводность;
    • при повышенной влажности и промокании стен здания показатель прохождения тепла будет выше.

    Чем ниже показатель теплопроводности строительного сырья, тем уютнее и теплее в помещении

    Как определить теплопотери

    Главные элементы здания, через которые уходит тепло:

    • двери (5-20%);
    • пол (10-20%);
    • крыша (15-25%);
    • стены (15-35%);
    • окна (5-15%).

    Уровень теплопотери определяется с помощью тепловизора. О самых трудных участках говорит красный цвет, о меньших потерях тепла скажет желтый и зеленый. Зоны, где потери наименьшие, выделяются синим. Значение теплопроводности определяется в лабораторных условиях, и материалу выдается сертификат качества.

    Читайте также:
    Трубная резьба: виды, размеры, ГОСТы, таблицы резбь

    Значение проводимости тепла зависит от таких параметров:

    1. Пористость. Поры говорят о неоднородности структуры. Когда через них проходит тепло, охлаждение будет минимальным.
    2. Влажность. Высокий уровень влажности провоцирует вытеснение сухого воздуха капельками жидкости из пор, из-за чего значение увеличивается многократно.
    3. Плотность. Большая плотность способствует более активному взаимодействию частиц. В итоге теплообмен и уравновешивание температур протекает быстрее.

    Использование значений теплопроводности на практике

    Материалы, используемые в строительстве, могут быть конструкционными и теплоизолирующими.

    Существует огромное количество материалов с теплоизолирующими свойствами

    Самое большое значение теплопроводности у конструкционных материалов, которые используются при возведении перекрытий, стен и потолков. Если не использовать сырье с теплоизолирующими свойствами, то для сохранения тепла потребуется монтаж толстого слоя утеплителя для возведения стен.

    Часто для утепления строений используются более простые материалы

    Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов, таблица показывает все значения.

    В некоторых случаях более эффективным считается утепление снаружи

    Полезная информация! Для построек из древесины и пенобетона не обязательно использовать дополнительное утепление. Даже применяя низкопроводной материал, толщина сооружения не должна быть менее 50 см.

    Таблица теплопроводности теплоизоляционных материалов

    Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

    Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

    При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

    В сухом состоянии При нормальной влажности При повышенной влажности
    Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
    Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
    Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
    Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
    Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
    Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
    Стекловата 15 кг/м3 0,046 0,049 0,055
    Стекловата 17 кг/м3 0,044 0,047 0,053
    Стекловата 20 кг/м3 0,04 0,043 0,048
    Стекловата 30 кг/м3 0,04 0,042 0,046
    Стекловата 35 кг/м3 0,039 0,041 0,046
    Стекловата 45 кг/м3 0,039 0,041 0,045
    Стекловата 60 кг/м3 0,038 0,040 0,045
    Стекловата 75 кг/м3 0,04 0,042 0,047
    Стекловата 85 кг/м3 0,044 0,046 0,050
    Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
    Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
    Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
    Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
    Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
    Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
    Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
    Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
    Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
    Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
    Пеноблок 100 — 120 кг/м3 0,043-0,045
    Пеноблок 121- 170 кг/м3 0,05-0,062
    Пеноблок 171 — 220 кг/м3 0,057-0,063
    Пеноблок 221 — 270 кг/м3 0,073
    Эковата 0,037-0,042
    Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
    Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
    Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
    Пенополиэтилен сшитый 0,031-0,038
    Вакуум
    Воздух +27°C. 1 атм 0,026
    Ксенон 0,0057
    Аргон 0,0177
    Аэрогель (Aspen aerogels) 0,014-0,021
    Шлаковата 0,05
    Вермикулит 0,064-0,074
    Вспененный каучук 0,033
    Пробка листы 220 кг/м3 0,035
    Пробка листы 260 кг/м3 0,05
    Базальтовые маты, холсты 0,03-0,04
    Пакля 0,05
    Перлит, 200 кг/м3 0,05
    Перлит вспученный, 100 кг/м3 0,06
    Плиты льняные изоляционные, 250 кг/м3 0,054
    Полистиролбетон, 150-500 кг/м3 0,052-0,145
    Пробка гранулированная, 45 кг/м3 0,038
    Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
    Пробковое покрытие для пола, 540 кг/м3 0,078
    Пробка техническая, 50 кг/м3 0,037

    Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

    Особенности теплопроводности готового строения

    Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.

    В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением

    Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из кирпича, бетона и камня дополнительно утеплять.

    Утепление построек из бетона или камня повышает комфортные условия внутри здания

    Полезный совет! Перед тем как утеплять жилище, необходимо продумать качественную гидроизоляцию. При этом даже повышенная влажность не повлияет на особенности теплоизоляции в помещении.

    Разновидности утепления конструкций

    Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:

    • при возведении каркасной постройки, используемая древесина обеспечивает жесткость здания. Утеплитель прокладывается между стойками. В некоторых случаях применяется утепление снаружи здания;
    Читайте также:
    Модульные дома из блок контейнеров: варианты строительства, планировка, фото

    Монтажные работы по утеплению каркасного сооружения требуют использования дополнительных конструктивных элементов

    • здание из стандартных материалов: шлакоблоков или кирпича. При этом утепление часто проводится по наружной стороне.

    Особенности монтажа теплоизолирующего материала с внутренней стороны

    Как определить коэффициенты теплопроводности строительных материалов: таблица

    Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:

    Необходимые коэффициенты для самых различных материалов

    Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.

    Технические характеристики утеплителей для бетонных полов

    О значении теплопроводности можно судить по сравнительным характеристикам

    Коэффициент материалов из бетона

    Бетонный раствор – это неоднородная цементно-песчаная смесь, которая имеет сложную структуру. Его коэффициент зависит от конкретного состава.

    Узнать теплопроводность бетона можно по таблицам или по характеристике конкретной марки. Средние значения следующие:

    1. Теплопроводность железобетонной плиты плотностью 2,5 – 1,7.
    2. Пенобетона – 0,08-0,29.
    3. Керамзитобетона – 0,14-0,66.
    4. Красный глиняный кирпич – 0,56.
    5. Силикатный кирпич – 0,7.
    6. Блоков из газосиликата – 0,072-0,165.
    7. Теплопроводность штукатурки – 0,1-1.

    Точные данные теплопроводности бетонной стены зависят от конкретных марок и их характеристик.

    Теплопроводность строительных материалов: таблица коэффициентов

    Теплопроводность: понятие и теория

    Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

    Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

    Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

    Потери тепла на разных участках постройки будут отличаться

    Полезный совет! При постройке домов стоит использовать сырье с минимальной проводимостью тепла.

    Утеплители для стен

    Утеплители используются, когда не хватает тепловой сопротивляемости наружных стен. Обычно для создания комфортного микроклимата в помещениях достаточно толщины 5-10 см.

    Значение коэффициента λ приводится в следующей таблице.

    Теплопроводность измеряет способность материала пропускать тепло через себя. Она сильно зависит от состава и структуры. Плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, являются плохими проводниками.

    От чего зависит величина теплопроводности?

    От множества факторов зависит значение теплопроводности строительных материалов. Таблица коэффициентов, представленная в нашем обзоре, это наглядно показывает.

    Наглядный пример демонстрирует свойство теплопроводности

    На данный показатель оказывают влияние следующие параметры:

    • более высокая плотность способствует прочному взаимодействию частиц друг с другом. При этом уравновешивание температур производится более быстро. Чем плотнее материал, тем лучше пропускается тепло;
    • пористость сырья свидетельствует о его неоднородности. При перемещении тепловой энергии через подобную структуру охлаждение будет небольшим. Внутри гранул находится только воздух, который обладает минимальным количеством коэффициента. Если поры маленькие, то при этом затрудняется передача тепла. Но повышается значение теплопроводность;
    • при повышенной влажности и промокании стен здания показатель прохождения тепла будет выше.

    Чем ниже показатель теплопроводности строительного сырья, тем уютнее и теплее в помещении

    Как определить теплопотери

    Главные элементы здания, через которые уходит тепло:

    • двери (5-20%);
    • пол (10-20%);
    • крыша (15-25%);
    • стены (15-35%);
    • окна (5-15%).

    Уровень теплопотери определяется с помощью тепловизора. О самых трудных участках говорит красный цвет, о меньших потерях тепла скажет желтый и зеленый. Зоны, где потери наименьшие, выделяются синим. Значение теплопроводности определяется в лабораторных условиях, и материалу выдается сертификат качества.

    Значение проводимости тепла зависит от таких параметров:

    1. Пористость. Поры говорят о неоднородности структуры. Когда через них проходит тепло, охлаждение будет минимальным.
    2. Влажность. Высокий уровень влажности провоцирует вытеснение сухого воздуха капельками жидкости из пор, из-за чего значение увеличивается многократно.
    3. Плотность. Большая плотность способствует более активному взаимодействию частиц. В итоге теплообмен и уравновешивание температур протекает быстрее.

    Использование значений теплопроводности на практике

    Материалы, используемые в строительстве, могут быть конструкционными и теплоизолирующими.

    Существует огромное количество материалов с теплоизолирующими свойствами

    Самое большое значение теплопроводности у конструкционных материалов, которые используются при возведении перекрытий, стен и потолков. Если не использовать сырье с теплоизолирующими свойствами, то для сохранения тепла потребуется монтаж толстого слоя утеплителя для возведения стен.

    Читайте также:
    Плоский шифер: состав, виды, размеры листа, вес, чем резать

    Часто для утепления строений используются более простые материалы

    Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов, таблица показывает все значения.

    В некоторых случаях более эффективным считается утепление снаружи

    Полезная информация! Для построек из древесины и пенобетона не обязательно использовать дополнительное утепление. Даже применяя низкопроводной материал, толщина сооружения не должна быть менее 50 см.

    Таблица теплопроводности теплоизоляционных материалов

    Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

    Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

    При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

    В сухом состоянии При нормальной влажности При повышенной влажности
    Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
    Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
    Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
    Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
    Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
    Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
    Стекловата 15 кг/м3 0,046 0,049 0,055
    Стекловата 17 кг/м3 0,044 0,047 0,053
    Стекловата 20 кг/м3 0,04 0,043 0,048
    Стекловата 30 кг/м3 0,04 0,042 0,046
    Стекловата 35 кг/м3 0,039 0,041 0,046
    Стекловата 45 кг/м3 0,039 0,041 0,045
    Стекловата 60 кг/м3 0,038 0,040 0,045
    Стекловата 75 кг/м3 0,04 0,042 0,047
    Стекловата 85 кг/м3 0,044 0,046 0,050
    Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
    Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
    Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
    Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
    Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
    Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
    Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
    Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
    Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
    Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
    Пеноблок 100 — 120 кг/м3 0,043-0,045
    Пеноблок 121- 170 кг/м3 0,05-0,062
    Пеноблок 171 — 220 кг/м3 0,057-0,063
    Пеноблок 221 — 270 кг/м3 0,073
    Эковата 0,037-0,042
    Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
    Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
    Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
    Пенополиэтилен сшитый 0,031-0,038
    Вакуум
    Воздух +27°C. 1 атм 0,026
    Ксенон 0,0057
    Аргон 0,0177
    Аэрогель (Aspen aerogels) 0,014-0,021
    Шлаковата 0,05
    Вермикулит 0,064-0,074
    Вспененный каучук 0,033
    Пробка листы 220 кг/м3 0,035
    Пробка листы 260 кг/м3 0,05
    Базальтовые маты, холсты 0,03-0,04
    Пакля 0,05
    Перлит, 200 кг/м3 0,05
    Перлит вспученный, 100 кг/м3 0,06
    Плиты льняные изоляционные, 250 кг/м3 0,054
    Полистиролбетон, 150-500 кг/м3 0,052-0,145
    Пробка гранулированная, 45 кг/м3 0,038
    Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
    Пробковое покрытие для пола, 540 кг/м3 0,078
    Пробка техническая, 50 кг/м3 0,037

    Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

    Особенности теплопроводности готового строения

    Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.

    В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением

    Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из кирпича, бетона и камня дополнительно утеплять.

    Утепление построек из бетона или камня повышает комфортные условия внутри здания

    Полезный совет! Перед тем как утеплять жилище, необходимо продумать качественную гидроизоляцию. При этом даже повышенная влажность не повлияет на особенности теплоизоляции в помещении.

    Разновидности утепления конструкций

    Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:

    • при возведении каркасной постройки, используемая древесина обеспечивает жесткость здания. Утеплитель прокладывается между стойками. В некоторых случаях применяется утепление снаружи здания;

    Монтажные работы по утеплению каркасного сооружения требуют использования дополнительных конструктивных элементов

    • здание из стандартных материалов: шлакоблоков или кирпича. При этом утепление часто проводится по наружной стороне.

    Особенности монтажа теплоизолирующего материала с внутренней стороны

    Как определить коэффициенты теплопроводности строительных материалов: таблица

    Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:

    Читайте также:
    Профильная труба: размеры, вес, толщина стенки, технические характеристики

    Необходимые коэффициенты для самых различных материалов

    Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.

    Технические характеристики утеплителей для бетонных полов

    О значении теплопроводности можно судить по сравнительным характеристикам

    Коэффициент материалов из бетона

    Бетонный раствор – это неоднородная цементно-песчаная смесь, которая имеет сложную структуру. Его коэффициент зависит от конкретного состава.

    Узнать теплопроводность бетона можно по таблицам или по характеристике конкретной марки. Средние значения следующие:

    1. Теплопроводность железобетонной плиты плотностью 2,5 – 1,7.
    2. Пенобетона – 0,08-0,29.
    3. Керамзитобетона – 0,14-0,66.
    4. Красный глиняный кирпич – 0,56.
    5. Силикатный кирпич – 0,7.
    6. Блоков из газосиликата – 0,072-0,165.
    7. Теплопроводность штукатурки – 0,1-1.

    Точные данные теплопроводности бетонной стены зависят от конкретных марок и их характеристик.

    Коэффициент теплопроводности материалов

    Теплопроводность и коэффициент теплопроводности. Что это такое.

    Теплопроводность.

    Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

    Можно сказать проще, теплопроводность – это способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

    На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем “абстрактный дом”. В “абстрактном доме” стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

    Чтобы поддерживать температуру в доме 25 °С, нагреватель должен постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

    Коэффициент теплопроводности.

    Количество тепла, которое проходит через стены (а по научному – интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

    Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

    В строительных нормах и расчетах часто используется понятие “тепловое сопротивление материала”. Это величина обратная теплопроводности. Если, на пример, теплопроводность пенопласта толщиной 10 см – 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

    Коэффициент теплопроводности материалов.

    Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

    Коэффициент теплопроводности материалов

    Что такое теплопроводность и термическое сопротивление

    При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

    Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

    Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

    Таблица теплопроводности теплоизоляционных материалов

    Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

    Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

    При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

    Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

    Таблица теплопроводности строительных материалов

    Сравнивают самые разные материалы

    Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

    Читайте также:
    Соедиенние и монтаж металлопластиковых труб своими руками

    Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

    Название Коэффициент теплопроводности Название Коэффициент теплопроводности
    Бронза 22-105 Алюминий 202-236
    Медь 282-390 Латунь 97-111
    Серебро 429 Железо 92
    Олово 67 Сталь 47
    Золото 318

    Как рассчитать толщину стен

    Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

    Термическое сопротивление ограждающих
    конструкций для регионов России

    Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

    Расчет толщины стены, толщины утеплителя, отделочных слоев

    Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

    Формула расчета теплового сопротивления

    R — термическое сопротивление;

    p — толщина слоя в метрах;

    k — коэффициент теплопроводности.

    Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

    Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

    Пример расчета толщины утеплителя

    Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

    1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
    2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

    Теплопроводность строительных материалов, их плотность и теплоемкость

    Приведена обширная таблица теплопроводности строительных материалов, а также плотность и удельная теплоемкость материалов в сухом состоянии при атмосферном давлении и температуре 20…50°С (если не указана другая температура). Значения даны для более 400 материалов!

    Следует обратить внимание на величину теплопроводности строительных материалов в таблице, поскольку эта характеристика, наряду с их плотностью, является наиболее важной. Особенно теплопроводность важна для строительных материалов, применяемых в качестве теплоизоляции при утеплении строительных конструкций.

    Теплопроводность строительных материалов существенно зависит от их пористости и плотности. Чем меньше плотность, тем ниже теплопроводность материала, поэтому низкая теплопроводность свойственна пористым и легким материалам (значения плотности строительных материалов, металлов и сплавов, продуктов и других веществ вы также сможете найти в подробной таблице плотности).

    Например, в нашей таблице теплопроводности материалов и утеплителей можно выделить следующие строительные материалы с низким показателем коэффициента теплопроводности — это аэрогель (от 0,014 Вт/(м·град)), стекловата, пенополистирол пеноплэкс и вспененный каучук (от 0,03 Вт/(м·град)), теплоизоляция МБОР (от 0,038 Вт/(м·град)), газобетон и пенобетон (от 0,08 Вт/(м·град)).

    Теплопроводность строительных материалов — Таблица!

    Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

    Какая в строй-материалах теплопроводность.

    Коэффициент теплопроводности строительных материалов — таблица!

    Это количественное свойство веществ пропускать тепло, которое определяется коэффициентом. Этот показатель равен суммарному количеству тепла, которое проходит сквозь однородный материал, имеющий единицу длины, площади и времени при одинарной разнице в температурах.

    Система СИ преобразует эту величину в коэффициент теплопроводности, это в буквенном обозначении выглядит так – Вт/(м*К). Тепловая энергия распространяется по материалу посредством быстро движущихся нагретых частиц, которые при столкновении с медленными и холодными частицами передают им долю тепла.

    Чем лучше нагретые частицы будут защищены от холодных, тем лучше будет сохраняться накопленное тепло в материале.

    Таблица теплопроводности строительных материалов.

    Главной особенностью теплоизолирующих материалов и строительных деталей является внутренняя структура и коэффициент сжатия молекулярной основы сырья, из которого состоят материалы. Значения коэффициентов теплопроводности строительными материалами таблично описаны ниже.

    Расшифровка таблицы.

    Выше приведена обширная таблица в которой указана теплопроводность тех или иних строительных материалов, а также плотность и удельная теплоемкость материалов в сухом состоянии при атмосферном давлении и температуре 20…50°С (если не указана другая температура). Значения даны для более 400 материалов!

    Трубный калькулятор

    Стоимость тонны при цене за метр трубы, ₽: н/о
    Цена метра трубы при стоимости тонны , ₽: н/о
    Общий вес 6 м. трубы, кг.: н/о
    Общая длина 1000 кг. труб, м.: н/о
    Название Трубный калькулятор (Круглая )
    Требования Javascript
    ОС Windows, Android, OSX, Linux
    Категория Бизнес , Образование
    Цена

    Установить виджет на сайт

    Формула и способы рассчета

    Расчет веса трубы из различных металлов (стальные трубы, нержавеющие, медные и др.) производится на основе имеющихся в справочниках ГОСТ и ТУ данных. Вес метра трубы, сортамент которой не входит в имеющиеся на сайте справочники, рассчитывается онлайн по формуле m = Pi * ro * S * (D – S) * L; Pi — математическая константа, которая выражает отношение длины окружности к её диаметру, равная

    3.14; ro — плотность металла из которой изготовлена круглая труба в кг/м³; Для расчета удельного веса 1 погонного метра трубы (m) необходимо указать размеры профиля трубы: диаметр D в мм, а также толщину металла, из которого изготовлена труба (толщину стенки S) и длину L (по умолчанию 1 м). Расчет теоретического веса прямоугольной профильной трубы производится аналогично круглой, за исключением части формулы для определения площади поперечного сечения.

    Популярные размеры в России

    • 530х8
    • 108х4
    • 325х8
    • 219х6
    • 57х3.5

    Таблицы веса 1 метра круглых труб различных металлов и сплавов по всем доступным ГОСТ и ТУ

    Наименование и размеры трубы Диаметр, мм Толщина стенки, мм Вес метра трубы Метров в тонне Плотность, кг/м³ Стандарт
    Труба 57х3 57 3 4.0000 кг. 250 м. 7850 ГОСТ 10704-91
    Труба 57х3.5 57 3.5 4.6200 кг. 216.5 м. 7850 ГОСТ 10704-91
    Труба 57х4 57 4 5.2300 кг. 191.2 м. 7850 ГОСТ 10707-80
    Труба 76х3.5 76 3.5 6.2600 кг. 159.7 м. 7850 ГОСТ 10704-91
    Труба 89х3.5 89 3.5 7.3800 кг. 135.5 м. 7850 ГОСТ 10704-91
    Труба 89х4 89 4 8.3800 кг. 119.3 м. 7850 ГОСТ 10704-91
    Труба 108х3.5 108 3.5 9.0200 кг. 110.9 м. 7850 ГОСТ 10704-91
    Труба 108х4 108 4 10.2600 кг. 97.5 м. 7850 ГОСТ 10704-91
    Труба 108х5 108 5 12.7000 кг. 78.7 м. 7850 ГОСТ 10704-91
    Труба 133х4 133 4 12.7300 кг. 78.6 м. 7850 ГОСТ 10704-91
    Труба 159х4 159 4 15.2900 кг. 65.4 м. 7850 ГОСТ 10704-91
    Труба 159х4.5 159 4.5 17.1500 кг. 58.3 м. 7850 ГОСТ 10704-91
    Труба 159х5 159 5 18.9900 кг. 52.7 м. 7850 ГОСТ 10704-91
    Труба 159х6 159 6 22.6400 кг. 44.2 м. 7850 ГОСТ 10704-91
    Труба 219х6 219 6 31.5200 кг. 31.7 м. 7850 ГОСТ 10704-91
    Труба 219х8 219 8 41.6300 кг. 24 м. 7850 ГОСТ 10704-91
    Труба 273х8 273 8 52.2800 кг. 19.1 м. 7850 ГОСТ 10704-91
    Труба 325х6 325 6 47.2000 кг. 21.2 м. 7850 ГОСТ 10704-91
    Труба 325х8 325 8 62.5400 кг. 16 м. 7850 ГОСТ 10704-91
    Труба 426х8 426 8 82.4700 кг. 12.1 м. 7850 ГОСТ 10704-91
    Труба 426х10 426 10 102.5900 кг. 9.7 м. 7850 ГОСТ 10704-91
    Труба 530х8 530 8 102.9900 кг. 9.7 м. 7850 ГОСТ 10704-91
    Труба 530х10 530 10 128.2400 кг. 7.8 м. 7850 ГОСТ 10704-91
    Труба 630х8 630 8 122.7200 кг. 8.1 м. 7850 ГОСТ 10704-91
    Труба 820х10 820 10 199.7600 кг. 5 м. 7850 ГОСТ 10704-91
    • Таблицы веса алюминиевых круглых труб
    • Таблицы веса латунных круглых труб
    • Таблицы веса медных круглых труб
    • Таблицы веса круглых труб из нержавеющих сплавов стали
    • Таблица веса круглых стальных труб

    Стандарты ГОСТ и ТУ доступные в расчетах калькулятора и таблицах веса:

    1. ГОСТ 494-2014 (х/д) — Трубы латунные. Холоднодеформированные
    2. ГОСТ 9941-81 — Трубы бесшовные холодно- и тепло-деформированные из коррозионно-стойкой стали
    3. ГОСТ 10707-80 — Трубы стальные электросварные холоднодеформированные
    4. ГОСТ 494-2014 (п) — Трубы латунные. Прессованные
    5. ГОСТ 617-2006 (п) — Трубы медные и латунные круглого сечения общего назначения. Прессованные
    6. ГОСТ 3262-75 — Трубы стальные водогазопроводные. Оцинкованные
    7. ГОСТ Р 52318-2005 — Трубы медные круглого сечения для воды и газа
    8. ГОСТ 32598-2013 — Трубы медные круглого сечения для воды и газа
    9. ГОСТ 617-2006 (х/д) — Трубы медные и латунные круглого сечения общего назначения. Холоднодеформированные
    10. ГОСТ 10704-91 — Трубы стальные электросварные прямошовные
    11. ГОСТ 18482-2018 — Трубы прессованные из алюминия и алюминиевых сплавов

    Применение

    Вес погонного метра трубы очень часто необходимо знать для осуществления расчетов в металлоконструкциях. Самое частое использование трубного калькулятора — определение массы трубы в приобретаемой партии, чтобы выяснить необходимые габариты транспорта для её перевозки, а также для расчета нагрузок будущей металлоконструкции и стоимости продукции.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: